Essential self-adjointness of symmetric linear relations associated to first order systems

Journées équations aux dérivées partielles (2000), article no. 10, 18 p.

@article{JEDP_2000____A10_0, author = {Lesch, Matthias}, title = {Essential self-adjointness of symmetric linear relations associated to first order systems}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {10}, publisher = {Universit\'e de Nantes}, year = {2000}, doi = {10.5802/jedp.574}, mrnumber = {2001m:34184}, language = {en}, url = {https://jedp.centre-mersenne.org/articles/10.5802/jedp.574/} }

Matthias Lesch. Essential self-adjointness of symmetric linear relations associated to first order systems. Journées équations aux dérivées partielles (2000), article no. 10, 18 p. doi : 10.5802/jedp.574. https://jedp.centre-mersenne.org/articles/10.5802/jedp.574/

[1] C. Bennewitz : Symmetric relations on a Hilbert space. Lect. Notes Math. 280 (1972), 212-218. | MR 54 #3468 | Zbl 0241.47022

[2] M. Braverman : On self-adjointness of a Schrödinger operator on differential forms. Proc. Amer. Math. Soc. 126 (1998), 617-623. | MR 98g:58163 | Zbl 0894.58072

[3] P. R. Chernoff : Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12 (1973), 401-414. | MR 51 #6119 | Zbl 0263.35066

[4] A. Dijksma and H. S. V. De Snoo : Selfadjoint extension of regular canonical systems with Stieltjes boundary conditions. J. Math. Anal. Appl. 152 (1990), 546-583. | MR 92h:47065 | Zbl 0714.34032

[5] I. Gohberg and M. Krein : Theory and applications of Volterra operators in Hilbert spaces, vol. 24 of Transl. Math. Monographs. Amer. Math. Soc., Providence, RI (1970). | MR 41 #9041 | Zbl 0194.43804

[6] I. Kac : Linear relations, generated by canonical differential equations. (Russian) Funct. Anal. Appl. 17 (1983), 86-87. | MR 85k:47064 | Zbl 0543.47043

[7] I. Kac : Linear relations, generated by a canonical differential equation on an interval with regular endpoints, and the expansibility in eigenfunctions. (Russian) Deposited Paper, Odessa (1984).

[8] V. Kogan and F. Rofe-Beketov : On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/1975), 5-40. | MR 56 #12392 | Zbl 0333.34021

[9] H. Langer and B. Textorius : A generalization of M.G. Krein's method of directing functionals to linear relations. Proc. Royal Soc. Edinburg Sect. A 81 (1978), 237-246. | MR 80d:47037 | Zbl 0442.47018

[10] M. Lesch and M. Malamud : On the number of square-integrable solutions and self-adjointness of symmetric first order systems of differential equations. In Preparation.

[11] I. Oleinik : On the essential self-adjointness of the Schrödinger operator on a complete Riemannian manifold. Math. Notes 54 (1993), 934-939. | MR 94m:58226 | Zbl 0818.58047

[12] I. Oleinik : On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds. Math. Notes 55 (1994), 380-386. | MR 95h:35051 | Zbl 0848.35031

[13] I. Oleinik : On the essential self-adjointness of the general second order elliptic operators. Proc. Amer. Math. Soc. 127 (1999), 889-900. | MR 99f:35039 | Zbl 0937.35034

[14] B. Orcutt : Canonical differential equations. Ph.D. thesis, University of Virginia (1969).

[15] L. Sakhnovich : Deficiency indices of a system of first-order differential equations. (Russian) Sibirskii Math. J. 38 (1997), 1360-1361. Translation in Siberian Math. J. 38 (1997), 1182-1183 | MR 98k:34133 | Zbl 0942.34071

[16] M. Shubin : Classical and quantum completeness for the Schrödinger operators on non-compact manifolds. In : B. Booβ-Bavnbek and K. P. Wojciechowski (eds.), Geometric aspects of partial differential equations (Roskilde, 1998), vol. 242 of Contemp. Math. Amer. Math. Soc., Providence, RI (1999), pp. 257-269. | Zbl 0938.35111

[17] M. Shubin : Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds. In : Seminaire : Équations aux Dérivées Partielles, 1998-1999. École Polytech., Palaiseau (1999), pp. Exp. No. XV, 24. | Numdam | Zbl 1061.58021

[18] J. Wolf : Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J. 22 (1973), 611-640. | MR 46 #10340 | Zbl 0263.58013