
Test-driven development

Creating the program in small steps
1. Create a test that tests some feature that will be added to the program.
2. Run the test. It should not pass.

○ If the test passes, move to step 1.

3. Develop the program so that it has the functionality required to pass the test.
4. Run the tests.

○ If the tests don’t pass, move to step 3 and further develop the functionality.

5. Refactor
○ If the program is ready, stop..
○ Otherwise, go to step 1.

Creating the program in small steps

Refactoring means cleaning the code while maintaining the functionality of the program. Cleaning includes tasks such as improving the readibility and dividing the program into smaller methods and classes.

1. Create a test that tests some feature that will be added to the program.
2. Run the test. It should not pass.

○ If the test passes, move to step 1.

3. Develop the program so that it has the functionality required to pass the test.
4. Run the tests.

○ If the tests don’t pass, move to step 3 and further develop the functionality.

5. Refactor
○ If the program is ready, stop..
○ Otherwise, go to step 1.

Write a teststart Run the tests

Write the
necessary

functionality

Run the tests

Refactor the
program

Advantages
● Forces the programmer to think of the functionality before writing the code
● Results in maintainable structure, since the program is built in small parts,

refactoring steadily.
● The end product contains tests, which makes further development easier:

when the code is changed, it’s easy to check if the existing functionality still
works.

● Fewer bugs in production.

Example: exercise
management

Part 1. Creating the project and including the JUnit
library

Let’s examine what test-driven development
might look like for a program that is meant to
manage exercises.

We want the exercise management software
to include the possibilities to list, add, and
remove exercises, as well as the ability mark
an exercise as completed.

Let’s start developing by creating an empty
project. Do this by selecting in NetBeans File ->
New Project. Choose the project category
“Maven” and the project type as “Java
Application”.

Now we get to fill in the information for our new
project. Set the project name as
“exerciseManagement”. The project path tells
where in the storage system the project files are
located.

Keep the package field empty.

When we press Finish, the new project is
created. You can view it on the left side of
NetBeans.

When we press Finish, the new project is
created. You can view it on the left side of
NetBeans.

Next we’ll add the JUnit library. It’s meant for
writing unit tests. (JUnit is included in the
exercise templates downloaded from TMC.)

Click open the folder Project Files, and double
click the ‘pom.xml’ file. The file details the
structure of our project and the libraries it uses --
we’ll take a closer look on the Advanced
programming course.

Copy the JUnit library before the line</project>:

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

Once the contents above are copied into the
pom.xml file (before the line </project>), save
the file.

This gives the project access to the JUnit library
and enables us to write unit tests.

Part 2. Creating the class for unit tests

Let’s create the first unit test. You can create
unit tests by right-clicking the project and
choosing new -> Other.

This opens a view for creating a new file.
Choose the category as “Unit Tests” and the
type of the created file as “JUnit Test”.

Then press “Next”.

You will then encounter an assistant foe creating
the unit test file..

Set the class name as
‘ExerciseManagementTest’ and choose not to
generate code in the class.

NB! Ensure that the class name ends with
“Test”.

Press Finish when ready.

Now the project folder “Test Packages” contains
the class “ExerciseManagementTest”

Part 3. First unit test

Let’s create the first test. The test uses a class
called ExerciseManagement, and expects it to
have a method called exerciseList that returns
the list of exercises.

The test method assertEquals receives two
values as parameters -- the first is the expected
value, and the second the value returned by
the program.

Here the method is used for checking the size of
a new exercise list: a new list should be empty.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class ExerciseManagementTest {

 @Test
 public void exerciseListEmptyAtBeginning() {
 ExerciseManagement management = new ExerciseManagement();
 assertEquals(0, management.exerciseList().size());
 }
}

The test is in the class
ExerciseManagementTest. Once it has been
created, it’s clear that it won’t pass: the class
that the test uses, ExerciseManagement, is
missing.

Nevertheless, let’s run the tests. This is done by
right-clicking on the project and choosing “Test”.

We notice the error “Failed to execute…”

Part 4. Implementing the functionality that is required
by the unit tests

Let’s create the class ExerciseManagement (the
class is added to the folder Source Packages).
Then let’s give it a method called exerciseList
that returns a list.

import java.util.ArrayList;

public class ExerciseManagement {

 public ArrayList<String> exerciseList() {
 return new ArrayList<>();
 }
}

Run the tests by right-clicking on the project
and choosing “Test”.

The tests pass. There is no refactoring, so
we’ll continue and write the next test.

Part 5. Second unit test and implementing the
related functionality

Next we’ll create a new test. It examines the
functionality that relates to adding new
exercises.

The test uses the add method of the class
ExerciseManagement, using it to add a new
exercise to the exercise list. If the addition was
successful, the size of the exercise list should
have grown by one.

The test does function at all, since the
ExerciseManagement class lacks a method
called ‘add’.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class ExerciseManagementTest {

 @Test
 public void exerciseListEmptyAtBeginning() {
 ExerciseManagement management = new ExerciseManagement();
 assertEquals(0, management.exerciseList().size());
 }

 @Test
 public void addingExerciseGrowsListByOne() {
 ExerciseManagement management = new ExerciseManagement();
 management.add("Write a test");
 assertEquals(1, management.exerciseList().size());
 }
}

We will create a method called ‘add’ to the
ExerciseManagement class and rerun the
tests. The method does nothing at the
moment.

The first test we created passes, but the
one we just defined does not.

The error message is “Failed: expected:
<1> but was: <0>” so the test expected the
value of 1 but received 0.

import java.util.ArrayList;

public class ExerciseManagement {

 public ArrayList<String> exerciseList() {
 return new ArrayList<>();
 }

 public void add(String exercise) {

 }
}

Let’s modify the functionality of the
ExerciseManagement class. We’ll add an
object varible: alist that contains the
exercises. We’ll only modify the add
method so that it passes the test, but will
not in fact do the thing we want it to.

Run the tests -- they should pass, and we’ll
move on to writing the next test.

import java.util.ArrayList;

public class ExerciseManagement {

 private ArrayList<String> exercises;

 public ExerciseManagement() {
 this.exercises = new ArrayList<>();
 }

 public ArrayList<String> exerciseList() {
 return this.exercises;
 }

 public void add(String exercise) {
 this.exercises.add("New");
 }
}

Part 6. Third unit test and the related functionality

Let’s enhance our tests: the added
exercise should be included in the list of
exercises.

The JUnit library offers a method called
assertTrue, which demands that the
parameter it receives is finally evaluates
as true.

Once we have added the new test to the
program, not all tests pass, again.

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TehtavienhallintaTest {

 @Test
 public void exerciseListEmptyAtBeginning() {
 ExerciseManagement management = new ExerciseManagement();
 assertEquals(0, management.exerciseList().size());
 }

 @Test
 public void addingExerciseGrowsListByOne() {
 ExerciseManagement management = new ExerciseManagement();
 management.add("Write a test");
 assertEquals(1, management.exerciseList().size());
 }

 @Test
 public void addedExerciseIsInList() {
 ExerciseManagement management = new ExerciseManagement();
 management.add("Write a test");
 assertTrue(management.exerciseList().contains("Write a test"));
 }
}

A crafty programmer modified the
ExerciseManagement so that the ‘add’ method
always adds the string ‘Write a test’ to the
exercise list.

This would result in a situation where the tests
would pass but the program would still not offer
a working solution for adding exercises.

Let’s rather modify the ExerciseManagement
class to add any exercise given to the ‘add’
method to its list of exercises.

import java.util.ArrayList;

public class ExerciseManagement {

 private ArrayList<String> exercises;

 public ExerciseManagement() {
 this.exercises = new ArrayList<>();
 }

 public ArrayList<String> exerciseList() {
 return this.exercises;
 }

 public void add(String exercise) {
 this.exercises.add(exercise);
 }
}

We notice some repetition in the test class
-- a suitable moment for refactoring!

Let’s make an ExerciseManagement
object variable and initialize it at the
beginning of each test.

Initializing a variable can be done by
adding to the test class a method
‘initialize’.

We annotate the ‘initialize’ method with
@Before, which guides the program to
execute this method before each test..

Running the tests after refactoring shows
that they all still pass.

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TehtavienhallintaTest {
 private ExerciseManagement management;

 @Before
 public void initialize() {
 management = new ExerciseManagement();
 }

 @Test
 public void exerciseListEmptyAtBeginning() {
 assertEquals(0, management.exerciseList().size());
 }

 @Test
 public void addingExerciseGrowsListByOne() {
 management.add("Write a test");
 assertEquals(1, management.exerciseList().size());
 }

 @Test
 public void addedExerciseIsInList() {
 management.add("Write a test");
 assertTrue(management.exerciseList().contains("Write a test"));
 }
}

Part 7. Fourth unit test and implementing the related
functionality

Let’s start adding the functionality to mark
an exercise as completed.

Once a new test has been written, the
situation is again that not all tests pass.

// ...
@Test
public void exerciseCanBeMarkedAsCompleted() {
 management.add("New exercise");
 management.markAsCompleted("New exercise");
 assertTrue(manager.isCompleted("New exercise"));
}
// ...

The new functionality calls for the
methods ‘markAsCompleted’ and
‘isCompleted’ in the
ExerciseManagement class.

The tests don’t check how the
methods work in detail, so at first
let’s add the bare minimum of
functionality.

The tests will pass after this.

// ...
public void markAsCompleted(String exercise) {

}

public boolean isCompleted(String exercise) {
 return true;
}
// ...

Part 8. Fifth unit test and implementing the related
functionality

So far we have checked that the
wanted functionality exists, but we
have not really checked that
unwanted behavior doesn’t occur.

If we focus on the existence of
wanted functionality in writing tests,
the tests might provide quite a narrow
view into the functionality of the
program.

Next, let’s write a test to check that
an exercise that has NOT been
marked as completed is not
completed.

The tests won’t pass.

// ...
@Test
public void ifNotMarkedCompletedIsNotCompleted() {
 management.add("New exercise");
 management.markAsCompleted("New exercise");
 assertFalse(management.isCompleted("Some exercise"));
}
// ...

Again, let’s implement enough
functionality to pass the tests. We are
going to have to make a fairly big
change: we’ll add a different list for
exercises that have been marked as
completed..

All the tests pass again after this.

However, some questions remain.
Should the exercises returnes by
‘exerciseList’ be marked as
completed? Is it really possible to
mark an exercise completed even if it
has not been added to the list of
exercises previously?

import java.util.ArrayList;

public class ExerciseManagement{

 private ArrayList<String> exercises;
 private ArrayList<String> completedExercises;

 public ExerciseManagement() {
 this.exercises = new ArrayList<>();
 this.completedExercises = new ArrayList<>();
 }

 public List<String> exerciseList() {
 return this.exercises;
 }

 public void add(String exercise) {
 this.exercises.add(exercise);
 }

 public void markAsCompleted(String exercise) {
 this.completedExercises.add(exercise);
 }

 public boolean isCompleted(String exercise) {
 return this.completedExercises.contains(exercise);
 }
}

We are going to do our first slightly
bigger change in the inner structure
of the program. An exercise is clearly
a concept, so it is probably
worthwhile to create a class to
represent it.

Let’s create the class Exercise. The
class has a name and knowledge of
whether it has been completed.

public class Exercise{

 private String name;
 private boolean completed;

 public Tehtava(String name) {
 this.name = name;
 this.completed = false;
 }

 public String getName() {
 return name;
 }

 public void setCompleted(boolean completed) {
 this.completed = completed;
 }

 public boolean isCompleted() {
 return completed;
 }
}

Now let’s change the structure of
ExerciseManagement so that instead
of strings the class will store the
exercises as instances of the
Exercise class.

Take notice that the definitions of the
methods don’t change, even though
their internal workings do.

Even though the change had a large
impact on the inner structure of the
ExerciseManagement, the tests still
pass.

Test-driven development would
continue in the same manner until the
wanted basic functionality would be in
place.

import java.util.ArrayList;

public class ExerciseManagement{

 private ArrayList<Exercise> exercises;

 public ExerciseManagement() {
 this.exercises = new ArrayList<>();
 }

 public ArrayList<String> exerciseList() {
 ArrayList<String> list = new ArrayList<>();
 for (Exercise exercise:: exercises) {
 list.add(exercise.getNamei());
 }

 return list;
 }

 public void add(String exercisea) {
 this.exercises.add(new Exercise(exercisea));
 }

 public void markAsCompleted(String exercise) {
 for (Exercise ex: exercises) {
 if (ex.getName().equals(exercise)) {
 ex.setCompleted(true);
 }
 }
 }

 public boolean isCompleted(String exercise) {
 for (Exercise ex: exercises) {
 if (ex.getName().equals(exercise)) {
 return ex.isCompleted();
 }
 }

 return false;
 }
}

Summary
In test-driven development the functionality of the program is constructed in small
steps. The programmer first writes a test that examines the wished functionality,
and then writes the program code that passes that test.

